Типичный автомобиль с четырехцилиндровым двигателем, движущийся по шоссе со скоростью 55 миль в час, будет производить около 5,000 контролируемых взрывов в минуту внутри двигателя, поскольку свечи зажигания воспламеняют смесь воздуха и топлива в каждом из цилиндров. Это то, что движет транспортное средство по дороге. Эти взрывы производят огромное количество тепла и разрушат двигатель за считанные минуты, если их не контролировать. Система охлаждения двигателя предназначена для контроля и регулирования этих высоких температур.
Современные системы охлаждения не сильно изменились по сравнению со старыми системами охлаждения, но они стали намного эффективнее и надежнее выполнять свою работу. Базовая система охлаждения по-прежнему состоит из жидкой охлаждающей жидкости, которая циркулирует через блок цилиндров и головку блока цилиндров (или головки в двигателе с V-образной конфигурацией), а затем вытесняется к радиатору для охлаждения потоком воздуха, проходящим через решетку на перед автомобилем.
Система охлаждения должна поддерживать постоянную температуру двигателя независимо от того, является ли температура наружного воздуха горячей 100 градусов по Фаренгейту или холодной 30 градусов ниже нуля. Если температура двигателя слишком низкая, пострадает экономия топлива и возрастут выбросы. Если температура двигателя будет слишком высокой в течение слишком долгого времени, двигатель будет поврежден. Диапазон рабочих температур двигателя для большинства автомобилей составляет от 195 до 220 градусов по Фаренгейту. Оптимальная температура составляет около 212 градусов по Фаренгейту. Более высокая разница температур между охлаждающей жидкостью двигателя и наружным воздухом делает теплопередачу более эффективной. Система охлаждения двигателя состоит из охлаждающей жидкости двигателя, каналов внутри блока цилиндров и головок цилиндров, водяного насоса для циркуляции охлаждающей жидкости и термостата для контроля температуры охлаждающей жидкости, радиатор для охлаждения охлаждающей жидкости, вентилятор для продувки воздуха через радиатор, крышку радиатора для контроля давления в системе и соединительные шланги для передачи охлаждающей жидкости от двигателя к радиатору, а также к система отопления автомобиля, в которой горячая охлаждающая жидкость используется для обогрева салона автомобиля.
Охлаждающая жидкость двигателя выполняет основную функцию конвективного теплообмена для двигателей внутреннего сгорания. Охлаждающая жидкость представляет собой смесь воды, антифриза, ингибиторов коррозии и смазочных материалов. Охлаждающая жидкость была разработана для преодоления недостатков воды как теплоносителя. Многие современные автомобили оснащены охлаждающей жидкостью с увеличенным или длительным сроком службы, которая рассчитана на срок до пяти лет или 150,000 30,000 миль. Зеленая охлаждающая жидкость обычно длится два года или XNUMX XNUMX миль. Правильная смесь и качество охлаждающей жидкости предотвратит замерзание зимой, предотвратит закипание летом, предотвратит ржавчину и коррозию металлических деталей, станет хорошим проводником тепла и поможет предотвратить электролиз.
Система охлаждения работает за счет циркуляции жидкого хладагента через каналы в блоке цилиндров и головке(ах) цилиндров. Когда охлаждающая жидкость течет по этим каналам, тепло передается от компонентов двигателя к охлаждающей жидкости. Затем нагретая охлаждающая жидкость проходит через резиновый шланг к радиатору в передней части моторного отсека. Протекая по тонким трубкам в радиаторе, горячая жидкость охлаждается потоком воздуха, поступающим в моторный отсек через решетку впереди автомобиля. Когда жидкость охлаждается, она возвращается в двигатель, чтобы поглотить больше тепла. Водяной насос поддерживает циркуляцию жидкости в системе при работающем двигателе.
Между двигателем и радиатором находится термостат, который следит за тем, чтобы температура охлаждающей жидкости оставалась выше определенной заданной температуры, что обеспечивает оптимальную работу двигателя. Если температура охлаждающей жидкости падает ниже этой температуры, термостат блокирует поток охлаждающей жидкости к радиатору, вместо этого направляя жидкость через байпас прямо обратно в двигатель. Охлаждающая жидкость будет продолжать циркулировать таким образом до тех пор, пока не будет достигнута оптимальная рабочая температура, после чего термостат откроется и позволит охладить охлаждающую жидкость обратно через радиатор.
Система охлаждения рассчитана на работу под давлением, чтобы предотвратить закипание охлаждающей жидкости. Однако слишком большое давление приведет к разрыву шлангов и других компонентов и утечке, поэтому необходима система для сброса давления, если оно превышает определенный предел. Работа по поддержанию давления в системе охлаждения возложена на крышку радиатора или расширительного бачка под давлением. Крышка обычно увеличивает давление в системе охлаждения на 14 или 15 фунтов на квадратный дюйм и поднимает температуру кипения примерно на 43 градуса по Фаренгейту. Крышка выпускает охлаждающую жидкость под давлением в расширительный бачок охлаждающей жидкости. Затем эта жидкость возвращается в систему охлаждения после остывания двигателя. Никогда не снимайте крышку радиатора сразу после остановки двигателя, потому что охлаждающая жидкость под давлением сразу же начнет кипеть, как только давление будет сброшено. Почти наверняка произойдут ожоги и серьезные травмы.
Охлаждающая жидкость следует по пути от водяного насоса через каналы внутри блока цилиндров, где она собирает тепло, выделяемое цилиндрами. Затем он направляется к головке цилиндров, где собирает больше тепла из камер сгорания. Затем она вытекает мимо термостата (если термостат открыт для прохождения жидкости), через верхний шланг радиатора и в радиатор. Охлаждающая жидкость протекает по тонким трубкам, составляющим сердцевину радиатора, и охлаждается воздушным потоком, проходящим через радиатор. Оттуда он вытекает из радиатора через нижний патрубок радиатора и возвращается к водяному насосу. К этому времени охлаждающая жидкость остынет и готова отобрать больше тепла у двигателя.
Есть несколько резиновых шлангов, которые соединяют между собой компоненты системы охлаждения. Основные шланги называются верхним и нижним шлангами радиатора. Эти два шланга направляют охлаждающую жидкость между двигателем и радиатором. Шланги отопителя подают горячую охлаждающую жидкость от двигателя к радиатору отопителя. На одном из этих шлангов может быть установлен регулирующий клапан отопителя, который блокирует попадание горячей охлаждающей жидкости в сердцевину отопителя, когда кондиционер настроен на максимальное охлаждение. Другой шланг, называемый перепускным, используется для циркуляции охлаждающей жидкости по двигателю в обход радиатора, когда термостат закрыт. В некоторых двигателях не используется резиновый перепускной шланг. Вместо этого они могут использовать металлическую трубу или иметь встроенный проход в переднем кожухе двигателя.
На задней части радиатора на стороне, ближайшей к двигателю, установлены один или два электрических вентилятора охлаждения внутри корпуса, предназначенного для защиты пальцев и направления воздушного потока. Вентиляторы управляются бортовым компьютером. Датчик контролирует температуру двигателя и отправляет информацию на компьютер. ЭБУ определяет необходимость включения вентилятора и включает реле вентилятора, если необходим дополнительный поток воздуха через радиатор. Вентиляторы поддерживают подачу воздуха через радиатор, когда автомобиль движется медленно или останавливается при работающем двигателе. Если бы вентиляторы перестали работать, температура двигателя начала бы повышаться каждый раз, когда автомобиль останавливался.
Если на автомобиле имеется кондиционер, перед радиатором системы охлаждения двигателя монтируется дополнительный радиатор, называемый конденсатором кондиционера. Конденсатор кондиционера также нуждается в охлаждении потоком воздуха, поступающим в моторный отсек. Если кондиционер включен, система будет поддерживать работу одного электрического вентилятора системы охлаждения, даже если двигатель не прогрет. При отсутствии потока воздуха через конденсатор кондиционера кондиционер не сможет охлаждать воздух, поступающий в салон автомобиля.
Перегретый двигатель быстро самоуничтожится. Надлежащее техническое обслуживание системы охлаждения жизненно важно для срока службы двигателя и бесперебойной работы системы охлаждения. Важно, чтобы сертифицированный специалист ASE ежегодно выполнял проверку всех компонентов системы охлаждения. Во время осмотра техник должен проверить под давлением крышку радиатора, чтобы убедиться, что система охлаждения работает при надлежащем уровне давления, запустить автомобиль до рабочей температуры, чтобы убедиться, что термостат двигателя правильно регулирует температуру двигателя, проверить уровень охлаждающей жидкости и визуально осмотреть на наличие любых признаков утечек охлаждающей жидкости проверьте защиту охлаждающей жидкости и уровни PH, чтобы определить, следует ли заменить охлаждающую жидкость, и визуально осмотрите шланги системы охлаждения. Всегда убедитесь, что вы используете тип охлаждающей жидкости и смесь, рекомендованные производителем вашего автомобиля.
похожие статьи
Важность систем отопления и кондиционирования воздуха
Система отопления в вашем автомобиле предназначена для того, чтобы вам было тепло, комфортно и безопасно, когда на улице холодно.
Распространенные типы охлаждающих жидкостей и их использование в системах жидкостного охлаждения
Использование жидкостей для теплопередачи является важным методом охлаждения во многих отраслях промышленности. При выборе наилучшего теплоносителя для системы охлаждения необходимо учитывать факторы производительности, совместимости и технического обслуживания. Вода обладает отличными свойствами теплопередачи, что делает ее своего рода стандартом по сравнению с другими охлаждающими жидкостями. Среди теплоносителей вода обладает превосходными свойствами во многих отношениях, с высокой удельной теплоемкостью около 4,200 Дж/кгK, низкой вязкостью и отсутствием температуры вспышки. С другой стороны, он имеет относительно узкий диапазон работы, так как температура жидкости делает простую воду восприимчивой к замерзанию или кипению.
Чистота воды
Качество уличной (водопроводной) воды зависит от ее хранения, доставки и конечного источника (подземные или поверхностные воды). Он может содержать коррозионно-активные примеси, такие как хлориды, соли щелочных карбонатов или взвешенные твердые частицы. Для систем охлаждения с рециркуляционным потоком воды систему можно заправлять уже отфильтрованной или очищенной водой. В то время как некоторых примесей следует избегать из-за потенциального коррозионного воздействия, совершенно чистая вода требует ионов и считается агрессивным растворителем. Грязная вода также является электролитическим мостиком, вызывающим гальваническую коррозию, если в системе присутствуют разнородные металлы.
Вода как теплоноситель в рециркуляционной системе также подвержена биологическому загрязнению. Водоросли, бактерии или грибки могут образовываться в зависимости от воздействия на систему света и тепла и наличия питательных веществ во влажных компонентах. Образовавшаяся слизь или биопленка могут препятствовать теплопередаче между жидкостью и смачиваемыми поверхностями. Следует учитывать достаточную концентрацию присадки. Например, гликоль в качестве добавки обычно используется для контроля биологического роста, но при концентрациях менее 20% эффективность ограничена; фактически, ниже 1% пропиленгликоль и этиленгликоль действуют как бактериальное питательное вещество.
Существует несколько сложных и взаимосвязанных факторов при выборе различных типов воды и воды/смесей, а также некоторые конструктивные требования, обуславливающие потребность в других теплоносителях. Рассмотрим сравнение пропиленгликоля (PG) с этиленгликолем (EG). Пропиленгликоль гораздо менее токсичен, чем этиленгликоль, поэтому с ним легче обращаться и утилизировать, чем с этиленгликолем. Он также имеет более высокую удельную теплоемкость, чем этиленгликоль. Однако его теплопроводность ниже, а вязкость выше, чем у этиленгликоля, что приводит к лучшим общим характеристикам ЭГ по сравнению с ПГ. В большинстве случаев используется смесь гликоля и воды с более низкой концентрацией гликоля из-за превосходных характеристик воды по сравнению с любым типом гликоля. EG требует более низких концентраций, чем PG, для эквивалентного снижения точки замерзания, повышения точки кипения и снижения температуры взрыва.
Совместимость с рабочей температурой
Пригодность жидкости для работы в диапазоне рабочих температур имеет первостепенное значение. Это должно включать рассмотрение фазовых переходов жидкости (кипение и замерзание), химическое разрушение химического состава жидкости и снижение смазывающих и теплопередающих свойств жидкости. Замерзание жидкости уменьшит теплопередачу на поверхности, а кипение опасно для систем, не предназначенных для выдерживания избыточного давления в защитной оболочке жидкости. Взрыв расширяющихся паров кипящей жидкости (BLEVE) является потенциально опасным явлением, которое может произойти при внезапном разрыве защитной оболочки, даже если расчетные условия эксплуатации по температуре и давлению должны удерживать жидкость в жидком состоянии. Следует также отметить точки воспламенения летучих жидкостей.
Большинство жидкостей можно оценить на температурную совместимость с помощью готовых печатных спецификаций, а другие материалы необходимы для определения ситуаций, связанных с различным давлением или необычными условиями эксплуатации. В тех случаях, когда конкретная комбинация жидкостей разрабатывается пользователем для использования, например, комбинации вода/гликоль, пользователю обычно требуется небольшая непосредственная работа по тестированию, учитывая доступность данных от производителей.
Совместимость материалов
Нержавеющая сталь и, в частности, нержавеющая сталь серии 300 (аустенитная нержавеющая сталь) инертны почти ко всем жидкостям-теплоносителям из-за природы пассивирующего слоя оксида хрома (III), покрывающего поверхности таких сталей. При использовании деионизированной воды нержавеющая сталь и никель считаются подходящими для смачиваемых поверхностей. Хотя нержавеющая сталь в большинстве случаев отлично подходит для защиты от коррозии, ее использование имеет недостаток в виде довольно низкой теплопроводности по сравнению с другими металлами, такими как алюминий или медь.
Алюминий и его сплавы имеют хорошую теплопроводность в пределах 160-210 Вт/мК. Однако алюминий склонен к коррозии или точечной коррозии из-за примесей в неочищенной воде. Даже с раствором гликоля в дистиллированной воде как EG, так и PG при окислении образуют кислые соединения. Это может вызвать коррозию смачиваемых поверхностей и образование побочных продуктов органических кислот. Методы предотвращения включают добавление в жидкость ингибиторов коррозии или обработку смачиваемых поверхностей, например, анодирование алюминия.
Медные и медно-никелевые сплавы обладают хорошей коррозионной стойкостью и естественной устойчивостью к биологическому росту. Как и в случае с алюминием, следует использовать ингибиторы коррозии, чтобы избежать кислотной коррозии.
Смачиваемые поверхности насоса, включая уплотнения, должны быть совместимы как с перекачиваемой жидкостью, так и с ожидаемыми условиями эксплуатации. Гальваническая коррозия в системах, использующих различные смачиваемые металлы, может создать дополнительные проблемы.
Диэлектрические свойства
Охлаждение трансформатора большой мощности предъявляет особые требования к электропроводности охлаждающих жидкостей, что не может способствовать возникновению дуги от высокого напряжения на землю или другие поверхности. Аналогичные требования к низкой электропроводности жидкости обусловлены напряжениями в десятки киловольт в таких приложениях, как охлаждение рентгеновских трубок. Прямое иммерсионное охлаждение электроники для повышения производительности или строгого контроля температуры в целях тестирования, очевидно, требует низкой электропроводности. Для этих целей используются диэлектрические жидкости, такие как XG Galden или Fluorinert, с диэлектрической прочностью в десятки киловольт на 1/10 дюйма. Можно использовать воду высокой степени очистки, хотя начальное удельное сопротивление воды может меняться со временем без постоянного обслуживания. Минеральные масла или углеводороды, такие как гексан или гептан, могут использоваться, но могут возникнуть проблемы с воспламеняемостью.
Эти органические жидкости часто имеют более высокую вязкость, чем вода, поэтому полезно получить данные поставщика о характеристиках расхода и давления подходящего насоса при работе с требуемой вязкостью жидкости.
Жидкость с низкой электропроводностью может накапливать статический заряд в результате электризации потока. Удельное сопротивление 2×1011 Ом·см или более (50 пСм/м или менее) считается восприимчивым к этому эффекту. Для сравнения, деионизированная вода имеет более низкое удельное сопротивление. Чтобы избежать накопления статического электричества, необходим заземленный шланг или металлический трубопровод. В антистатическом шланге могут использоваться проводящие добавки к полимерному материалу, или он может иметь провод, намотанный через трубу, с заземляющими соединениями через соответствующие интервалы.
Деионизированная вода
Деионизированная вода имеет очень низкий уровень минеральных ионов, которые способствуют электропроводности воды. Производство деионизированной воды высшей степени чистоты предполагает использование смешанного слоя ионообменных смол для удаления из воды минеральных катионов и анионов и замены их ионами водорода и гидроксида.
Даже если принять меры предосторожности для обеспечения пассивации смачиваемых поверхностей через контур охлаждающей жидкости, со временем в воде будут образовываться ионные примеси. Природа воды состоит в том, чтобы поглощать ионы из минералов, с которыми она контактирует, а деионизированная вода с недостаточным содержанием ионов жаждет их и агрессивно усваивает их с контактных поверхностей.
Чтобы сохранить первоначальные диэлектрические свойства воды, ее необходимо непрерывно пропускать через слои смолы. Эти грядки будут постепенно терять свою эффективность, и придется проводить регенерацию грядки, если ее не нужно периодически заменять. Для регенерации смешанных слоев требуются сложные системы, а также различные регенерирующие агенты для анионных и катионных смол. Масла, ил или металлические частицы (либо в результате механической обработки, либо в результате химического воздействия, такого как загрязнение железом) также уменьшают срок службы слоя смолы.
Производительность
Существует ряд различных теплофизических свойств, которые можно использовать для оценки тепловых характеристик жидкости, включая теплопроводность, удельную теплоемкость, плотность и вязкость. Конечной целью максимизации этих свойств является улучшение теплопередачи между жидкостью и теплообменными поверхностями, с которыми она контактирует. Непосредственная оценка коэффициента теплоотдачи в этих случаях требует использования соотношений, разработанных для расчета коэффициента для различных конкретных геометрических условий.
В этих соотношениях два безразмерных параметра имеют зависимость от свойств жидкости. Число Рэлея связано с потоком, управляемым плавучестью, также известным как свободная конвекция или естественная конвекция. Число Прандтля представляет собой отношение коэффициента диффузии импульса к коэффициенту температуропроводности. Они определяются следующими уравнениями:
Число Рэлея (например, для конвекции с вертикальной стенкой)
Корреляции теплопередачи имеют тенденцию следовать той или иной форме:
Значение C представляет собой эмпирически определенную корреляцию, при которой число Рэлея занимает положение в положительном числителе корреляции, в то время как число Прандтля имеет тенденцию занимать обратную позицию в знаменателе; таким образом, оба имеют положительный вклад в теплопередачу. Однако теплопроводность занимает в числителе позицию с прямой положительной зависимостью первого порядка от коэффициента теплопередачи. Определение положительного или отрицательного воздействия использования конкретной жидкости в приложении может быть громоздким, поскольку речь идет о нескольких типах и ориентациях конвекционных поверхностей теплопередачи.
За исключением полного термического анализа, менее строгий подход, включающий показатель качества, такой как число Муромцева, может дать более простую основу для сравнения жидкостей, принимая во внимание некоторые или все ранее упомянутые физические свойства.
Число Муромцева состоит из:
Значения a, b, d и e представляют собой положительные значения, характерные для типа приложения.
В общем, из числа Муромстеффа, а также из полного анализа различных корреляций для коэффициентов конвективной теплопередачи между жидкостью и твердыми поверхностями видно, что теплопроводность, плотность и удельная теплоемкость положительно влияют на характеристики теплоноситель, а вязкость вносит отрицательный вклад.
К отрицательному влиянию большей вязкости на теплопередачу добавляется влияние на производительность насоса жидкостей с различной вязкостью, поскольку скорость жидкости оказывает значительное положительное влияние на коэффициент теплопередачи. Насосы также снабжены диаграммами зависимости расхода от давления, чтобы показать ожидаемую производительность с различными типами жидкостей и смесями, которые могут вызвать отклонение от предоставленных кривых. Работа при различных температурах также повлияет на вязкость жидкости, что окажет дополнительное влияние на скорость потока. Скорость жидкости или скорость потока важны для понимания ожидаемой производительности системы. Теплообменники и охлаждающие пластины часто рассчитаны на определенный расход жидкости определенного типа. Отклонение от жидкости, используемой для построения графиков прогнозируемых результатов, приведет к изменению цифр.
Конечно, объемный расход жидкости должен быть достаточным для удовлетворения требований по отводу тепла, как это ожидается исходя из удельной теплоемкости жидкости и допустимого повышения температуры:
Согласно часто используемому уравнению Дарси-Вейсбаха,
с корреляциями для коэффициента трения fD, доступными для различных условий потока и поверхностей труб и шлангов. Коэффициент трения обычно принимает форму, зависящую от числа Рейнольдса, так что вязкость жидкости имеет положительную связь с коэффициентом трения. Если предполагается, что система будет работать с насосом, пропускная способность которого чувствительна к противодавлению в системе, вязкость предполагаемой жидкости может иметь важное значение.
Стоимость соображений
Водопроводная вода, очевидно, является самым дешевым вариантом, а очищенная охлаждающая вода будет стоить дороже в зависимости от типа чистоты и требуемого уровня.
Следует отметить затраты на техническое обслуживание, связанное с конкретным типом охлаждающей жидкости. Это может включать фильтрацию, ионизационные слои, катодную защиту и доливку испарившейся или вытекшей жидкости. Утилизация является еще одним фактором: водопроводную или очищенную воду обычно можно утилизировать в обычный дренаж, но вода, смешанная со спиртами или другими органическими веществами, и вообще любые органические жидкости обычно требуют других методов. Расходы на утилизацию растворов охлаждающей жидкости, которые требуют периодической промывки и перезарядки в течение срока службы, а также растворов, с которыми необходимо обращаться в конце срока службы системы, могут превышать первоначальную стоимость охлаждающей жидкости.
Со временем в неидеально закрытой системе (протечки в швах или уплотнениях) можно ожидать снижения уровня жидкости. Добавление смеси воды/хладагента для доведения уровня жидкости до уровня должно включать специально контролируемые концентрации охлаждающей жидкости, соответствующие существующей жидкости системы. Однако со временем гликоли могут распадаться на органические кислоты — измерение pH жидкости в системе и проверка на наличие твердых и биологических загрязнений могут указывать на то, что требуется замена раствора охлаждающей жидкости.
Удельная теплоемкость
(Дж/кгК)
Заключение
Существует много типов охлаждающих жидкостей, доступных для удовлетворения требований применения. Выбор подходящей охлаждающей жидкости для конкретного применения требует понимания характеристик и теплофизических свойств жидкости, включая эксплуатационные характеристики, совместимость и факторы технического обслуживания. В идеале охлаждающая жидкость представляет собой недорогую и нетоксичную жидкость с исключительными теплофизическими свойствами и длительным сроком службы. Каждый вариант охлаждающей жидкости обладает различными свойствами, такими как теплопроводность, удельная теплоемкость и термическая стабильность, но их использование в конечном итоге будет зависеть от их надежности и экономичности.